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Abstract—Cloud cover is a major challenge in optical satellite
imaging, leading to significant data loss and reduced operational
efficiency. This study explores the potential of nowcasting-based
cloud prediction for spacecraft observation planning, utilizing
commercially available cloud forecasts. A proof-of-concept ex-
periment was conducted using Sentinel-2 data, where cloud
predictions were interpreted through a logistic function and
validated against ground truth cloud masks. The results show
that the cloud predictions achieve approximately 90% accuracy
at the time of acquisition, decreasing to 75% five hours before
observation. These findings highlight the feasibility of integrating
nowcasting into observation planning to enhance operational
efficiency.

I. INTRODUCTION

The operational efficiency and data quality of optical satel-
lite imaging are highly dependent on atmospheric conditions,
with cloud cover being one of the most significant challenges.
Optical satellites cannot typically capture imagery through
clouds, leading to substantial data loss. This interference can
range from complete occlusion to partial distortion from, for
example, cloud shadows, which compromises the accuracy
of satellite imagery for various applications. During NASA’s
MODIS mission, it was reported that approximately 67% of
captured images were classified as cloudy, illustrating the
impact of cloud cover on satellite observation [1]. Traditional
methods for minimizing cloud interference often rely on the
generation of cloud masks on the ground to filter out cloud-
affected pixels [2], [3]. Although these cloud masks effectively
filter unusable portions of an image, they do not prevent the
unnecessary use of bandwidth and power required to capture
and transmit the acquisition.

To address this, Giuffrida et al. proposed a Neural Network
designed to run directly on the satellite, identifying and
excluding areas affected by clouds before downlinking images
[4]. This approach can even be incorporated into adaptive
scheduling models, dynamically altering the observation plan
based on the detected clouds onboard [5].

However, if the cloud cover was known in advance, satellite
resources could be scheduled even more efficiently. Wang et
al. [6] underscored that uncertainty in cloud cover directly
impacts the scheduling effectiveness of agile spacecraft, as
cloud-free imaging opportunities become critical to efficient
task planning. Similarly, Lin et al. [7] developed a sophis-
ticated scheduling system, demonstrating how incorporating
cloud cover predictions could optimize satellite scheduling
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Fig. 1. Image and nowcast prediction for a cloudy image (left) and a clear
image (right)

by balancing factors like power constraints and data col-
lected. This is especially relevant for scheduling multi-modal
constellations, where diverse sensor types such as optical
and Synthetic Aperture Radar (SAR) can complement each
other. Unlike optical sensors, SAR technology can capture
acquisitions through cloud cover. However, SAR satellites are
typically more limited in observational duty cycle. Therefore,
effective cloud prediction enables a more strategic allocation
of tasks across a multi-modal constellation, optimizing which
satellite should be used for a given observation [8].
Nowcasting is a short-term weather forecasting technique
which extrapolates available current weather data to create
a forecast for the coming hours. The commercially available
technology (the Meandair Nowcasting Weather Engine) used
in this paper leverages Al to generate high resolution, near
real-time predictions of cloud cover. This data can be used
to inform observational planning of Earth Observation (EO)
spacecraft. Figure 1 illustrates the potential of nowcasting for
planning spacecraft observations, showcasing predicted and
actual cloud cover under both clear and cloudy conditions.
In recent years, various studies have demonstrated the poten-
tial of nowcasting to support satellite operations. For instance,
Roussel et al. adapted cloud prediction models originally
used for photovoltaic energy applications to satellite Earth
observation, achieving notable accuracy in their forecasting
results, with a true positive rate of 81.6% and a false positive
rate of 10.1% at 90 minutes before the observation [9]. Yi Gu
et al., developed a dynamic scheduling approach that integrates
predictive recurrent neural networks (PredRNN) to anticipate
cloud coverage. Their results show that predictive scheduling
models can improve both the efficiency and accuracy of task
planning compared to conventional methods. However, their
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Fig. 2. Example of sampled acquisition

study was limited to point targets and did not address broader
areas of interest [10].

In this work we show that these predictions provide a
good prediction of local cloud levels, by cross-referencing
nowecasting predictions with Sentinel-2 acquisitions. We argue
that these predictions can be used in two ways: 1) to inform
planning to predict if an acquisition will be affected by
clouds before capture and 2) to re-plan failed acquisitions by
determining if an acquisition was affected by clouds before
receiving data on ground. This solution complements existing
on-board cloud detection solutions and increases the efficiency
of EO spacecraft.

II. METHODOLOGY

The weather predictions used in this work were provided
through an API to the Meandair Nowcasting Weather En-
gine [11], which is commercially available. To verify the
performance of the cloud predictions provided, a proof of
concept has been devised using Sentinel-2.

A. Dataset collection

Upcoming Sentinel-2 acquisition plans are available for
download from the Copernicus website [12]. A typical ac-
quisition stretches from one pole to the other. Because the
scale of the observation affects accuracy, samples were taken
at the scale of CubeSat acquisitions, which was set at a 20x30
km area. Figure 2 shows an example of the sampling of a
Sentinel-2 acquisition.
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Fig. 3. Coverage of the test set

Because a Sentinel-2 acquisition can last for up to five
hours, the exact time at which each sample is captured depends
on its position within the acquisition. To accurately determine
the acquisition time for each sample, a linear interpolation
was performed. This calculation was based on the start time
and duration of the Sentinel-2 acquisition, as well as the
start and end latitudes. Using the center latitude of each
sample, its corresponding acquisition time was interpolated.
The interpolated time, tinerpolated, 1S calculated by the following
equation:

lat — laty;,

tinterpolated = tstart + < ) - duration (1)

latax — latmin

where Zinerpolated TEPresents the interpolated timestamp, g
is the starting time of the acquisition, lat is the latitude of
the sample, laty,;, and laty,, are the minimum and maximum
latitudes of the acquisition, and duration is the total duration of
the acquisition in milliseconds. To gather cloud predictions for
each of these samples, nowcasting predictions were collected
every 10 minutes, starting from 5 hours prior to the acquisition
time. Finally, to obtain ground truth against which to compare
the cloud predictions, the actual images and cloud masks were
downloaded from Sentinel Hub [13] which uses its in-house
model, S2Cloudless, to extract the cloud masks [14].

The data was gathered for one week, starting on November
19, 2024. This dataset was split into a tuning set for the first
day and a test set for the remaining six days. This resulted
in 312 samples in the tuning set and 1476 samples in the test
set. The coverage of the test set is shown in Figure 3.

B. Prediction interpretation

The nowcasting predictions have pixel values between 0 and
100, representing cloud opacity as a percentage. To convert
these opacity values into probabilities of cloud cover, a logistic
function is applied. The formula to convert the cloud opacity
to a probability is the following:

f(z)

Where k is the growth rate and z is the center of the
curve. The cloud cover probability for the image is then the
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Fig. 4. Plot of the tuned sigmoid

average of the probabilities over all pixels. To tune the logistic
function, the root mean squared error (RMSE) is computed be-
tween the cloud cover probabilities in the predicted maps and
the actual cloud masks. The differential evolution algorithm
was used to find the parameters of the logistic function that
minimize the RMSE [15]. To obtain a logistic function suitable
for use across all cloud cover ranges, the tuning dataset was
balanced using 25% bins, resulting in 28 images per bin for
0%—-25%, 25%-50%, 50%—75%, and 75%—-100%. The tuned
logistic function is shown in Figure 4.

C. Metrics

The metrics of interest vary depending on the use case
of the predictions. The metrics used in this experiment are
accuracy, precision, and sensitivity. Accuracy indicates overall
performance, precision reflects the absence of false positives,
and sensitivity reflects the absence of false negatives. Accuracy
is defined as follows:

TP + TN
ACCUTACY = b TN 1 FP 1 FN ®)
where TP represents true positives, TN represents true neg-
atives, FP represents false positives, and FN represents false
negatives. Accuracy is used to assess overall performance.

For the rescheduling use case, where a captured but not
received acquisition is predicted to be cloudy, it is important
to minimize both false positives and false negatives. Predicting
an image to be cloudy when it is actually clear (a false
positive) results in wasted satellite resources. The metric used
to evaluate this is precision:

TP
TP + FP

When considering the use case of canceling acquisitions, the
metric of sensitivity also becomes important:
TP
Sensitivity = ———— 5)
TP + FN

This metric is high when the number of false negatives is low.
A low number of false negatives means that acquisitions are
canceled primarily when they are truly cloudy.

Precision =

“4)

D. Experimental Setup

For the test dataset, nowcasting maps and actual cloud
masks were collected and analyzed. A maximum cloud cover
threshold was applied, with tests conducted at 20%, 40%,
and 60% thresholds. Based on these thresholds, images were
classified as either cloudy or clear. This classification was
performed separately for both the nowcast predictions and
the actual cloud masks. The classification results were then
compared to evaluate the agreement between predicted and
actual cloud cover. Finally, the metrics described above were
calculated to assess performance.

III. RESULTS

Figure 5 shows the evolution of the nowcast performance
over the full 5 hour prediction window. Initially, the model
achieves high accuracy, starting at nearly 90%. As expected,
over the 5-hour period, this accuracy gradually decreases
to around 75%. A similar trend is observed with precision.
Sensitivity begins at 95%, reflecting a low occurrence of false
negatives at the time of acquisition.

The performance decline over time is less significant when
predicting under lower cloud cover thresholds, compared to
higher cloud cover thresholds. This suggests that cloud cover
thresholds influence the predictive reliability of nowcast over
extended durations. The overall result confirms the feasibility
of cloud cover prediction for satellite acquisitions. It allows
for the prediction of an image being cloudy at the time of
acquisition and even 5 hours before the acquisition with an
accuracy of 75%. The high initial accuracy suggests that the
interpretation of the cloud predictions is done correctly, and
that the decrease is due to nowcasting becoming less precise
as the time until acquisition increases.

IV. CONCLUSIONS

This paper proves the feasibility of using cloud predictions
to accurately determine whether an acquisition will be cloudy
before being taken, and to accurately determine if an acquisi-
tion was cloudy directly after being taken but before receiving
data on ground. This capability allows for dynamic observation
schedule adjustments, ultimately increasing the amount of
valuable data generated by Earth Observation spacecraft.
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Fig. 5. Evolution of nowcast performance over time. Max Cloud indicated cloud cover thresholds.
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